skip to main content


Search for: All records

Creators/Authors contains: "Pérez-Huerta, Alberto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Laser-assisted atom probe tomography (APT) is a relatively new, powerful technique for sub-nanometric mineral and biomineral analysis. However, the laser-assisted APT analysis of highly anisotropic and chemically diverse minerals, such as phyllosilicates, may prove especially challenging due to the complex interaction between the crystal structure and the laser pulse upon applying a high electric field. Micas are a representative group of nonswelling clay minerals of relevance to a number of scientific and technological fields. In this study, a Mg-rich biotite was analyzed by APT to generate preliminary data on nonisotropic minerals and to investigate the effect of the crystallographic orientation on mica chemical composition and structure estimation. The difference in results obtained for specimens extracted from the (001) and (hk0) mica surfaces indicate the importance of both experimental parameters and the crystallography. Anisotropy of mica has a strong influence on the physicochemical properties of the mineral during field evaporation and the interpretation of APT data. The promising results obtained in the present study open the way to future innovative APT applications on mica and clay minerals and contribute to the general discussion on the challenges for the analysis of geomaterials by atom probe tomography.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Bivalve shells are extensively used as bioarchives for paleoclimate and paleoenvironmental reconstructions. Proxy calibrations in recent shells are the basis for sclerochronology and the applications of geochemistry data to fossils. Shell geochemical information, however, could be altered with the disappearance of intercrystalline organic matrix components, including those linked to shell growth increments, during early diagenesis. Thus, an evaluation of the chemistry of such organics is needed for the correct use of sclerochronological records in fossil shells. Here, we use atom probe tomography (APT) for in situ geochemical characterization of the insoluble organic matrix in shell growth increments in the Antarctic scallop, Adamussium colbecki. We confirm the presence of carboxylated S-rich proteoglycans, possibly involved in calcite nucleation and growth in these scallops, with significant concentrations of magnesium and calcium. Diagenetic modification of these organic components could impact proxy data based on Mg/Ca ratios, but more importantly the use of the δ15N proxy, since most of the shell nitrogen is likely bound to the amide groups of proteins. Overall, our findings reinforce the idea that shell organics need to be accounted for in the understanding of geochemical proxies. 
    more » « less
  5. Occlusion of organic components in synthetic calcite crystals has been recently used as a model to understand the role of intra-crystalline organics in biominerals. However, the characterization of the distribution of both types of organics inside these calcite crystals is very challenging. Here, we discuss the potential of using the technique of atom probe tomography (APT) for such characterization, focusing on the analysis of chitin incorporation in single crystals. Additionally, APT has at least the same spatial resolution as TEM tomography, yet with the advantage of obtaining quantitative chemical data. Results show that chitin, either after degradation with yatalase or in the form of nanofibers, forms discrete clusters (2 to 5 nm) in association to water and hydronium molecules, rather than forming a 3D network inside crystals. Overall findings indicate that APT can be an ideal technique to characterize intra-crystalline organic components in abiogenic and biogenic carbonates to further advance our understanding of biomineralization. 
    more » « less